Subject title: Tracing the Archean Earth in modern ocean basalts from multiple sulfur isotopes signatures

Advisor: Pierre Cartigny, DR
email address: mailto:cartigny@ipgp.fr

Second Advisor/ Supervisor: Catherine Chauvel, DR
email address: mailto:chauvel@ipgp.fr

Host lab/ Team: IPGP - CAGE and Stable Isotopes teams

Financing: Doctoral contract on the SHRED ERC project without teaching assignment

Summary: We are looking for a PhD student to join an international team to study the Early Earth geodynamics. The planned Ph.D. project will largely be based on multiple sulfur isotope geochemistry (i.e. mass-independent isotope signatures) of sulfide and melt inclusions from mantle-derived lavas and glasses (mostly ocean island basalts) as a witness of Archean recycled sedimentary material in the mantle. Techniques will primarily rely on both gas-source and laser-ablation multi-collector ICPMS. Experience with high-temperature geochemistry (particularly isotope geochemistry) is preferred, but not required.

Presentation of the subject:

The Earth’s atmosphere was free of O₂ until ca. 2.4 Gy. Without any ozone-induced UV-shielding, photochemical effects led to unique sulfur isotope signatures that are preserved in the sedimentary record, characterized by non-zero Δ³³S and Δ³⁶S-signatures in the Archean and near-zero Δ³³S and Δ³⁶S-signatures since the Proterozoic (Figure 1, Farquhar et al., 2000). Their recycling into the Earth’s mantle (which has zero Δ³³S and Δ³⁶S-signatures) provides a powerful witness of exchanges of old material between the surface and deeper reservoirs of our planet.
The mantle $\Delta^{33}\text{S}$ record remains very scarce. Diamonds from the continental lithosphere (150-250 km) provided a first record of non-zero $\Delta^{33}\text{S}$ (e.g. Cartigny et al., 2009) but this type of sample cannot be easily linked to other geochemical tracers (e.g. Sr, Nd etc.).

Ocean island basalts despite their unique ability to sample deep and old recycled components, as established from Nd, Hf, Pb and W-isotopes, remain little studied, mostly because they are both degassed and that glasses are rare. Lavas are more common but degassed and crystallised/expressed sulfides are prone to alteration. Importantly, the few available data are ambiguous (Cabral et al., 2013; Delavault et al., 2016; unpub. data) showing both absence and occurrence of mass-independent signatures of S-isotopes within a same series of samples.

To clarify this important issue, the goal of this PhD project is to provide an extensive dataset of multiple S-isotopes. The present work will concentrate on basalts from the Polynesian islands with a strong focus on those having the most extreme radiogenic isotopic compositions, i.e. which record the most pristine recycled components (Chauvel et al., 1992). The PhD candidate will use multiple techniques including (1) fluorination-vacuum techniques coupled to gas-source mass-spectrometry and will contribute to the analysis of single sulfide grains, bulk rocks and sulfide standard calibration for MC-ICPMS (2) laser-ablation multi-collector ICP-MS. The second technique will be developed by the PhD student and will allow the first analyses of S-isotopes from melt inclusions.

The PhD project will be part of a larger project aiming at finding traces of early Earth materials in the source of plume volcanism. This project is funded by the SHRED ERC project led by Catherine Chauvel.

Références: